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A dynamic controlled system with one degree of freedom is considered, The system is acted upon by a 

non-linear resistance, a controlling force and a disturbance. The control and the disturbance are of bounded 

magnitude. A feedback control is designed which takes the system to a prescribed state. The proposed 

control law has certain advantages compared with the alternative approach which totally ignores the 

disturbances. The control is synthesized for an arbitrary non-linear resistance. It is time-suboptimal and 

robust to variations of the parameters and disturbances. 

1. STATEMENT OF THE PROBLEM 

CONSIDER a system with one degree of freedom whose dynamics is described by the equation 

mq” = R (q‘) + u + T’ 62, Q’, t) (1.~1 

Here 4 is the generalized coordinate of the system, m>O is a constant inertial coefficient (the mass), 
R(q*) is the resistance, U is the control and V(q, q’, t) is the disturbance; a dot denotes 
di~erentiation with respect to time t. 

We will assume that the resistance R(q’) is directed in the opposite direction to the velocity and 
its magnitude is strictly increasing as the velocity increases; it is zero in the state of rest. Also R(q’) 
is a smooth function. Hence, we have 

q’R (q-) < 0, a’R (q+)&* < 0 (q+ # 0), R (0) = 0 (1.2) 

The controf and the disturbance are assumed to be bounded by geometric constraints, and the 
maximum disturbance is strictiy less than the maximum ccmtrol. We have 

I u I < u,, I ‘y 67, q‘, t)l < Pro, p < 1 (1.3) 

Here U,>O and p< 1 are constants. In all other respects, the disturbance Vfq, q., t> may be an 
arbitrary function of its arguments. 

It is required to construct a feedback control U(q, q’) which takes the system (1.1) from an 
arbitrary initial state 

4 @o) = 4*1 Q’ &J = (q’Y (1.4) 
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to a prescribed final state with zero velocity 

q 01) = 4*, Q’ (tr) = 0 (1.5) 

in a finite time. Here t”, q”, (q’)‘), q* are some given values, the time tl is not fixed. 
Let 1>0 be some quantity of the same dimensions as the coordinate q. We introduce the 

dimensionless variables 

x = (q-q*) 
1 -9 (1.6) 

Making the change of variables (1.6) in Eq. (1. I), we obtain 

5” + f (5’) = 24 + v (x, x*, t) (1.7) 

Here and in what follows, dots denote derivatives with respect to dimensionless time t’, which in 
(1.7) and below is written simply as t. By (1.2) and (1.6) the smooth functionf(X’) has the following 

properties: 

zf (4 > 07 f' (a > 0 (2 f O), f (0) = 0 (1.8) 
The variables u and v in (1.7) are constrained by [see (1.3) and (1.6)) 

lul\<l, IvI,<p,p<1 (1.9) 

After the change of variables (1.6), the initial conditions (1.4) and the final conditions (1.5) take 

the form 

5 (0) = E, 5’ (0) = ‘1 (1.10) 

x (T) = 0, 5’ (T) = 0 (1.11) 

Here 

E = (qO - q*)/L 11 = (q’)“T,,lZ, T = (tl - t,)lT, 

Our control problem now can be stated in the following form. 

Problem 1. Construct a feedback control u(x, X’ ) which satisfies the constraint (1.9) and takes 
system (1.7) with an arbitrary disturbance v constrained by (1.9) from any initial state (1.10) to a 
prescribed final state (1.11) in a finite time. 

Note that this formulation is a generalization of the problems discussed in [ 1, 21 to the case of a 
non-linear resistancef(x’) in the system (1.7). The functionf(x’) should satisfy conditions (1.8) and 
in all other respects it is quite arbitrary. 

2. A GAME-THEORETICAL APPROACH 

Let us consider Eq. (1.7) from the point of view of differential game theory, assuming that u and v 
are the controls of two opponents constrained by (1.9). We will seek a positional control u(x,x’) 
which takes system (1.7) from state (1.10) to state (1.11) in the shortest guaranteed time T for any 
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admissible disturbance v. The control ZJ (x, x’) obtained by solving the differential game produces, 
as is easily seen, a solution of Problem 1. On the other hand, solution of the differential game 
reduces [3, 41 to a solution of a time-optimal control problem for the system 

2” + f (5’) = (1 - p)u; I~l<<l, O,<p<1, T-+min (2.1) 

with boundary conditions (1.10) and (1.11). Equation (2.1) is obtained from (1.7) for v = -pu, 
which corresponds to the worst (for U) opponent control: the optimal player controls are such that 
c4 = fl, v = kp at any instant. 

The control U(X, x’) required in Problem 1 and the corresponding time T are obtained by 
synthesizing the time-optimal control for Eq. (2.1) with boundary conditions (1.10) and (1.11). The 
time-optimal control problem is written in the form 

. 
51 = x29 x2 - = -f (x2) + (1 - p)u; I u I < 1, 0 < p < 1 (2.2) 

~1 (0) = i, ~2 (0) = 1, z1 (2’) = t2 (T) = 0, T -_, min 

(X1 = 2, Za = 5’) 

3. TIME-OPTIMAL CONTROL 

We will solve problem (2.2) by the maximum principle. The Hamiltonian for problem (2.2) has 
the form 

H = PlX2 + p2 w - Pb - f (x2)1 (3.1) 

where p1 and p2 are conjugate variables. The conjugate system has the form 

p; = 0, p2’ = -p1 + f’ (;cz)P2 (3.2) 

Since (2.2) is an autonomous system, our time-optimal control problem has the first integral 

H = p92 + p2 r(i - p)u - f (x2)1 = h > 0 (3.3) 

where h is a constant. 
By the maximum principle, we obtain from (3.1) subject to the constraint ( u 16 1 [see (2.2)] 

u = sign p2 (3.4) 

Let us consider the possibility of the existence of singular sections of the optimal trajectory on 
which p2 = 0. On such a singular section, by the second equation in (3.2), we have also p, = 0. 
Therefore, if a singular section exists, we have pI = const = 0 on the entire trajectory. But then the 
second equation in (3.2) is homogeneous on the entire trajectory, and since p2 = 0 on the singular 
section, we have p2 = 0 on the entire trajectory. However, by the maximum principle, the conjugate 
vector does not vanish identically on the optimal trajectory. The contradiction proves that the 
optimal trajectory is free from singular sections. Thus, the equality p2 = 0 may be observed only at 
isolated instants of time (switching points) and, by (3.4), we have u = +l almost everywhere. 

Let us first consider the sections of the optimal trajectory where p2>0, u = 1. From Eqs (2.2) we 
obtain for these sections 

d.Qkr2 = Z2 [1 - p - f (a)]-' (3.5) 

From (3.5) it follows that in the x 1 , x2 plane the sections of the optimal trajectory with p2 > 0 are 
arcs of the curves 
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FIG. 1 

Xl = %?+ (‘2z) + c+ (P2 > 0) 

Here ct is an arbitrary constant and the function (Pi,+ (x2) is defined by the equality 

(3.6) 

z dz 

I-p--f(z) ’ O,<P<i 
D 

We note some properties of the function “ppi (y), that follow from equalities (3.7), (1.8) and are 
needed in the sequel. As y varies from --CQ to 0, the function ‘pr, + is positive and strictly decreasing, 
vanishing for y = 0. The point y = 0 is the unique extremum of the function ‘ppi (y) (its minimum). 
If the transcendental equation for zf 

f (2s) = 1 - p (3.8) 

is unsolvable, i.e. f(z) < 1 - p for all z, then the function cppi (y) is strictly increasing for all y 3 0. In 
this case ‘pp+ (y) > 0 for all y # 0. 

If. however, z+ is a root of Eq. (3.8) then this root is positive and unique by conditions (1.8). In 
this case, the function ‘ppf (y) is strictly increasing from 0 to CQ in the interval y f (0, z+) and is 
strictly decreasing for y > z+. A typical curve of the dependence (3.6) in the x1 , x2 plane for C+ = 0 
is shown in Fig. 1 for the case when Eq. (3.8) has a root .z+ >O. The direction in which the time t 
increases along the trajectory according to the first equation in (2.2) is shown by arrows in Fig. 1. 

We similarly consider the sections of the trajectories with p2<0. These sections are arcs of the 
curves 

21 = ‘pp- (32) + c- (P2< 0) (3.9) 

Here, as in (3.6), c- is an arbitrary constant and the function ‘pc, - is defined by an equality similar to 
(3.7): 

We introduce a transcendental equation for z- similar to (3.8): 

(3.10) 

f (0 = -_(I - P) (3.11) 
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If Eq. (3.11) does not have a solution z -, i.e. f(t) > p - 1 for all z, then the function (P$,- (y) (3.10) 
is strictly increasing for y < 0 and strictly decreasing for y > 0. Here ‘pP- ( y) < 0 for all y f: 0. 

If z- is a root of Eq. (3.11), then it is unique and negative (Z-CO) by conditions (1.8). In this case 
the function ‘pP- (y) is strictly decreasing for y E (- W, z-), strictly increasing for y E (z-, 0), and 
again strictly decreasing for y E (0, CQ). As y-+ z-, this function tends to -co, and for y = 0 it has a 
local zero maximum. A typicai graph of the function cpl,- (y) can be obtained from the graph of the 
function ‘ppf (y) in Fig. 1 by a central symmetry transformation (or, equivalently, by simultaneously 
reversing the directions of both axes aI, x2). 

The curves described above are the trajectories corresponding to pz>O and p2 <O that pass 
through the origin in the x1 , x2 plane, Other curves whose arcs may be sections of optimal 
trajectories are obtained from these curves by parallel translation by c+, c- along the xl axis [see 
(3.6) and (3.9)]. 

Note that if the transcendental equations (3.8) and (3.11) have solutions, then system (2.2) has 
the corresponding solutions 

x2 = 2” (p2 > 01, 22 = z- (p2 < 0) (3.12) 

In the xi , x2 plane, the solutions (3.12) correspond to phase trajectories in the form of straight lines 
parallel to the x1 axis. These lines are the asymptotes of the curves (3.6) and (3.9, respectively (see 
Fig. 1). 

Thus, the required optimal trajectories consist of sections of the curves (3.6) and (3.9) with 

various c+, c- and also possibly segments of the straight lines (3.12) if the corresponding equations 

(3.8) and (3.11) are solvable. 

We will now show that each optimal trajectory has at most one control switching point, i.e. the function k(t) 
vanishes at most once. 

Assume that this is not so. Suppose that the function p2 (t) vanishes at two instants f ‘, I”, and between them it 
is positive. Then 

Pa (t) > 0, 1 = (t’r 0; P2 0’) = Pa (t”) = 0 (3.13) 

From the first integral (3.3) for t’, t” we obtain by (3.13) 

pls, (t’) L- PI”2 (t”) = h > 0 (3.14) 

If p1 = const = 0, then from (3.2) we obtain for p2(t) a linear homogeneous equation, which with zero 
conditions (3.13) at t’, t” has an identically zero solutionpZ(t)=O. But this contradicts the maximum principle, 
which asserts the existence of a nonzero conjugate vector. Therefore, pt = const f0 and from (3.14) we obtain 
XZ(~‘) =x2(?“). However, on all phase trajectories except the straight lines (3.12) the variable x2 is either 
strictly increasing or strictly decreasing as the time t increases. This follows from the previous analysis of the 
phase trajectories and is clear in Fig. 1. The equality ~z(f’) = x2(Y) is therefore possible only if the reievant 
section of the trajectory is a segment of the straight line (3.12), i.e. 

22 (t) I_ z+, t E (t’, P) (3.15) 

Substituting (3.15) in the second conjugate equation (3.2), we obtain a linear equation with constant 
coefficients 

Pz’ = --I%+ fws, k = f' @+I > 0 

where k> 0 by (1.8). The general solution of this equation has the form 

pa (t) = pllk f Cekt (3.16) 

where p1 = const #0 and C is an arbitrary constant. But the solution (3.16) is monotone in t and cannot satisfy 
conditions (3.13) for anyp, #O and C. Thus, the section of the optimal trajectory where conditions (3.13) hold 
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FIG. 2 

cannot be a straight segment of the line (3.15). We have thus shown that an optimal trajectory may not include 
sections of the form (3.13). 

We can similarly prove that an optimal trajectory may not include sections such that the function pz(r) is 
negative inside the section and vanishes at its endpoint. 

Therefore, on each optimal trajectory the function p2(t) vanishes at most once, i.e. the control may have at 
most one switching point. 

The only phase trajectories that reach the origin as the time increases are the branch of the curve 
(3.6) with c+ = 0 which lies in the quadrant x1 30, x260 (Fig. 1) and the branch of the curve (3.9) 
with c- = 0 which lies in the quadrant x 1 ~0, x220. These curve branches correspond to the 
controls u = 1 and u = -1, respectively. The collection of these branches form the switching curve, 
whose equation is written as 

Xl = qp (x2) (3.17) 

Here we have introduced the notation 

%I (Y) = VP+ (Y)t Y < 0; % (Y) = VP- (!I), Y > 0 (3.18) 

By the properties of the functions (3.7) and (3. lo), the function t&(y) (3.18) is strictly decreasing 
for all y and vanishes for y = 0, where it has a point of inflection. 

We can now easily describe the entire field of optimal trajectories. An optimal trajectory 
originating from any point of the phase plane x1, x2 consists of a straight-line segment of one of the 
families (3.6) or (3.9) and a section of the switching curve (3.17). 

The field of optimal trajectories is qualitatively shown in Fig. 2 for the case when Eqs (3.8) and 
(3.11) have roots. The thick curve in Fig. 2 is the switching curve (3.17) and the arrows indicate the 
direction of increase of the time t, Note that this picture of the field of optimal trajectories is similar 
to the picture observed with a linear resistance [6]. 

The optimal control corresponding to this field of phase trajectories may be represented in the 

form 

43 (+ x2) = s&n 1% (5) - 4, 21 Z 4% (x2) 

up (xl, x2) = sign z1 = -sign x2, z1 = gp (x2) (3.19) 

(x1 = z, 52 = x’) 

where the function & is defined by relationships (3.18), (3.7) and (3.10). 
The control law (3.19) by construction solves Problem 1. This solution may be called suboptimal, 
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FIG. 3 

because it is time-optimal (unimprovable) when v is the “worst-case” disturbance, as assumed in the 
game-theoretical approach. With worst-case disturbance v = -pv, the system moves along optimal 
trajectories (see Fig. 2). If the disturbance deviates from the worst case (v# -pv), which is usually 
so, the trajectories deviate from the optimal trajectories. The motion along the switching curve is in 
the sliding mode, and the time taken to reach the origin only diminishes. 

4. SIMPLIFIED APPROACH 

So far, we have assumed that the disturbance is unknown but its maximum attainable value 
is known and essentially affects the synthesized control. In dimensionless variables, the disturb- 
ance bound has the form ( v ( d p [ see (1.9)] and the synthesized control (3.19) depends on the 
parameter p. 

We often use a different approach to control synthesis in the presence of disturbances, which 
simply ignores the disturbances. In our case, this simplified approach means that the parameter p is 
set equal to zero during control synthesis and the disturbances are ignored. The control uc(xi , x2) 
obtained in this way is defined by relationships (3.19), (3.18), (3.7) and (3.10) with p = 0. The 
switching curve for simplified control is given by (3.17) with p = 0. It is represented in Fig. 3 by the 
thick solid curve. The dashed curve shows, for comparison, the switching curve with p 2 0. 

Let us compare the two control synthesis techniques-the game-theoretical and the simplified 
method. To this end, we will examine the dynamics of system (1.1) for some pE(0, 1) under the 
action of the simplified control uo(.xl, x2). We will represent this system in the form 

Xl 
-_ 
- 52, 34 - = -4 (x2) + uo (Xl, x2) + v (4.1) 

I v I < p < I (x1 = x, x2 = 5’) 

For system (4.1), we consider the following auxiliary problem of finding the worst-case 
disturbance. 

Problem 2. Find the optimal control v(xi , x2) of system (4.1) which satisfies the constraint (v/ d p 
and such that the first intersection of any phase trajectory of this system with the switching curve 
x1 = cpo(x2) lies as far as possible from the origin, i.e. at the maximum possible [xl ( or, equivalently, 
the maximum possible Ix2 I. 
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First assume that the starting point is in the region xi >$,(x,). Then, by (3.19). we have u(, = - 1 for the 
given trajectory. The phase trajectory of system (4.1) first crosses that branch of the curve 7, = $,,(x~) where 

xi >O, xz<O (see Fig. 3). Problem 2 is described by the relationships 

(4.2) 

The instant T when the process terminates is not fixed. Maximization of X,(T) is equivalent by (4.2) to 
minimization of the integral functional 

T 

J = (--s)dt-,min 
s 

(4.3) 
0 

Applying the maximum principle to Problems (4.2) and (4.3), we form the Hamiltonian 

H = Pl% + Ps iv - 1 - f WI + Is 

where pi , pz are the conjugate variables. They satisfy the conjugate system 

(4.4) 

Pl * = 0, Pa’ = f’ (51) Pa - p1 - 1 (4.5) 

and the transversality conditions corresponding to the boundary conditions (4.2): 

P&i (zp) + Pa = 09 If = 0 (t = TF) (4.6) 

From the first condition in (4.6), applying relationships (3.18) and (3.7) for p = 0 and noting that xz(~)<O by 
(4.2), we obtain 

Pl = -_ps 11 - f (~a)l/za (t = z) (4.7) 

Substituting (4.7) into (4.4) and using the second transversality condition in (4.6j, we obtain after 
simplifications 

Ii = Ps tv - 2) + Zs = 0 (t = r) 

Since xZ(r) <O and 1 v / c p < 1, we obtain from this equality 

Pz m < 0 (4.X) 

We find the optimal control from the condition for maximum H (4.4) over / v 1 d p, 

v = p sign Pa (4.9) 

Singular sections of the trajectory are ruled out. Indeed, if p?-0 in some time interval, then in this interval 
pi = -1 by the second equation (4.5). But pi = const, and therefore pl = - 1 on the entire trajectory. Then the 
second equation in (4.5) becomes linear and homogeneous for p2 and its solution with initial condition (4.8) 
does not vanish. Thus, there are no singular sections and equality (4.9) implies that the control u(t) has 

switching points when p*(t) = 0. 
Let us find the switching curve in the xi, x2 plane. Since system (4.2) is autonomous, its Hamiltonian (4.4) 

preserves a constant value along the optimal trajectory, and by (4.6) this constant value is zero: 

H = (PI + 1) 52 + pz to - 1 - f (41 = 0 

Hence it follows that at the switching point, i.e. for pZ = 0, we have either pi = -1 or x2 = 0. But the 
inequality pi = -1, as we have shown, implies that p2 never vanishes. We thus have x2 = 0 at the switching 
point, and the switching curve in this case is the ray x2 = 0, xi >O. 

In order to determine the sign of the control for x2 < 0 and x2 > 0, it suffices to determine its sign at a single 
point. At the terminal time r we have x2(r)<0 by (4.2) andP2(7)<0 by (4.8). Thus, v = -p for ~2~0. 
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As a result, 

D (X1, X2:2) = p sign ;e2 (4.10) 

We have synthesized the optimal control in the region x1 >&,(x2). To obtain the control in the 
region x1 <J10(x2), we note some symmetry properties. Whenf(z) is replaced with g(z) = -S(-z), 
we have by (3.7) and (3.10) 

‘pp+ (Y) * --(Pp- (-!I), VP- (Y) + -%+ (-$7 (f (2) * -f (-2)) (4.11) 

From (3.18) and (4.11) it follows that after this change 

+P (Y) * -%J (-Y) (f (?) * -f (-a)) (4.12) 

Let us now make in (4.1) the change of variables 

213 -52, 52--t -x1, v + -v, f (2) --f -f (-2) (4.13) 

By (4.12) and (3.19), u. is changed to -u. and system (4.1) remains invariant. Hence it follows 
that in the region xl < cpo (x2) the field of optimal trajectories and the optimal control are the same as 
in the region xl >cpo(xz), but with f(z) replaced by g(z) = -f( -z). S ince (4.10) is independent of 
the specific form of the functionf(z), it also applies in the region x1 <cpo(x2). Thus, equality (4.10) 
defines the solution of Problem 2 in the entire x1, x2 plane. 

5. ANALYSIS OF THE PHASE TRAJECTORIES 

Consider the motion of system (4.1) under the action of the simplified control u0 (x1 , x2) defined 
by relationships (3.19), (3.18), (3.7) and (3.10) for p = 0 and the worst-case disturbance v from 
(4.10). Assume that the initial point .& q lies on the branch of the switching curve x1 = (po(xz), where 
x1 <O, x,>O (see Fig. 3). Let us investigate the phase trajectory until its next intersection with the 
same branch of the switching curve. This piece of the trajectory consists of four sections, each with 
constant u. and v. These sections have the following endpoints and controls (see Fig. 3): 

1) (E, q) -+ (x1O, O), uo = -1, ” = p 

2) ($O, 0) + (f’, q’), ug = --1, v = -p (5.1) 

3) (E’, q’) + (xl*, O), &J = 1, v = --p 

4) (XI*, 0) + (:*, q*), z&l = 1, v = p 

The parameters of the endpoints (5.1) satisfy relationships that reflect their position on the 
switching curve and on the coordinate axes (see Fig. 3): 

E = $0 (rl), rl > 0, t < 0, 1: > 0 

%’ = 40 (Tl’), q’ < 0, x1* < 0 (5.2) 

E* = 90 (q*), ?I* > 0, E* < 0 

Substituting uo and v from (5.1) into Eq. (4.1) and integrating along the corresponding sections of 
the trajectory, we have 
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Replacing 5, 5 and 5” by their expressions from (5.2) and using formulas (3.18), (3.7) and (3.10) 
for p = 0, we obtain 

?’ v 

!I adz s 2 d.2 
rl s zdt ?’ zdz 

I--f(2) - -l-f(Z) = l-PCf(z) - 0 
0 

s l+P+fw 
0 0 

‘1: 1)’ s 8 dz s 0’ 
z dz s tl’ 

2 da 
-l--f(z) - 1---f(z) == 0 

0 
--Iff -t-f(z) + s ii-Z(l) 

0 0 

Recall that q’<O, q>O, q*>O by (5.2). Set 3’ = -$‘, qO>O and transform relationships (5.3) so 
that they contain only integrals over intervals on the positive half-line. Simplifying, we obtain 

a, (no) = x2 @>@I (rl), 02 (?I*) = x2 (P) @D, PLO) (5.4) 

Here 

(5.5) 

Consider the transcendental equations (5.4) which determine T)(’ and n* for given q > 0 and pi (0, 1). To this 
end, we wilf note some properties of the functions Gi, i = 1,2,3,4. from (5.5). Recall that by (1.8) f(z) > 0 for 
z>O andf(z)-+O as z-0. 

The denominators in the integrands for the functions @r and @s in (5.5) are positive for all ~30. Therefore, 
the functions @t and a3 are defined and bounded for all y 3 0. 

If the equations 

f (%I = 1 + P, g (ZS = -f (-4 = 1 + P (5.6) 

have solutions for z2, z4, then the denominators of the integrands of the corresponding functions @z, Q4 in 
(5.5) vanish for finite z2, z4 equal to the roots of the equations (5.6). In this case, (P2, a4 are monotone 
increasing and go to infinity at y = z2 and y = 24, respectively. If Eqs (5.6) have no solutions, then the functions 
DZ, a4 are defined for all y 3 0. In both cases, the denominators of the integrands for the functions Q2, a4 have 
maxima over f3 0 and g s 0, which are respectively equal to (2 + p)‘( 1+ p)- 1’4 We thus have the inequalities . 

@a (y) > vyV2, CD, 2 YY?Q, v =I 4 (4 -I- PI (2 + PY4 

The functions e2 and (P4 are thus always positive and strictly increasing, taking all values from 0 to m for 
yao. 
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Hence it follows that the transcendental equations (5.4) for any q>O and PE (0,l) have unique positive 
solutions yO>O and q* > 0. These solutions are continuous and monotone functions of q. 

Let us differentiate equalities (5.4) with respect to q. After simple reductions we obtain 

w -= x’ (PI Q’s’ 01”) dq” 
dq 

-= 
@a’(V) dq 

x4 (P) ,fw w a1 (II)* 
w w ah’ ho) 

From relationships (5.5) and properties (1.8) of the functions, we obtain the inequalities 

@l' (Y) 
(D;(Y)<l, $$<I, I/>0 

Using the second inequality, we obtain from (5.7) 

(5.7) 

(5.8) 

We can verify that the function x2(p) (5.5) is strictly increasing from 0 to m on pE [0, 11, and x = 1 for p equal 
to 

P * = (51ft - 1)/2 = 0,613.. (5.9) 

The number p” is the well-known golden section. 
First assume that p<p* and therefore x”(p) <LX, where a< 1 is a positive number. Then from (5.8) we have 

dtl+larl < a’@~ (rl)/@,’ (tl*), tl > 6 (5.10) 

and hence 

Qp, @I*1 < +%h)* r1>0 (5.11) 

We will show that q*<q. Assume that this is not so, specifically q* 3~. From (5.5) we obtain @z(y)>@,(y) 
for all y = 0. Then, by the monotonicity of the function Qz(y), we obtain the chain of inequalities 

Q, (V) > @‘r (rl) > @, (tl) 

which leads to a contradiction with inequality (5.11). Thus, n* <q. 
Let us transform inequality (5.10), substituting the expressions for the derivatives at’, Gz’ from (5.5) and 

using the positivity of the functionf(z): 

$$< ~Prl[~+f(r)*)l[i-(~fP)-lf(rj+)l 
11* [I + f (1111 11 + (1 - PI_‘f hII 

< a’tl[i + f WI 
)1* [I + f olll bl > 0) 

We can simplify the last inequality, noting thatf(q*) <f(q) by the monotonicity off(z) and by the inequality 
q* <q. We obtain 

Integrating this inequality with q* = 0 when q = 0, we obtain (q*)2< a2q2 or q*/q < a. 
Thus, if pep*, where p* is defined in (5.9), then q*/q<n, i.e. the phase trajectory approaches the origin. 

The distance from the origin diminishes at a rate not slower than a geometrical progression. The system 
therefore reaches the prescribed state in a finite time, although after in~niteIy many control switchings. 

q0 
Suppose that the system has reached a small neighbourhood of the origin, so that q is sufficiently smatl. Here 
and q* are also small in view of their continuous dependence on q. Sincef(z)-+ 0 as z+ 0 by (1.8), the terms 

f(z), g(z) can be omitted in the integrals (5.5) for small y, which gives in the limit 

@)i (y) _ yY2, y - 0, i = 1, 2, 3, 4 

The transcendental equation (5.4) for small q thus take the form 
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ho)a = x* (PM, (tlV = x* (PI ho)* 

Hence we obtain 

Vi’1 = x8 (PI (5.12) 

Let p>p* and therefore x2(p)>l. Then, by (5.13), we obtain q* >q and the phase trajectory, even if it has 
reached a small neighbourhood of the origin, eventually moves away from the origin. The system does not go to 
the prescribed state. 

Thus, with an arbitrary function f(z) that satisfies condition (1.8), the simplified approach 
produces a control uo(xl, x2) which is defined by relationships (3.19) for p = 0 and has the following 
properties. 

If p < p* = 0.618, then for any admissible disturbance 1 v 1 c p the system reaches the origin. The 
time to reach the origin is finite, although the number of switchings in general is infinite. 

If p > p*, there exists an admissible disturbance v defined by equality (4.10) for which the system 
never reaches the origin. 

Therefore, simplified control guarantees a solution of Problem 1 only for p<p*, i.e. when the 
ratio of the maximum allowed disturbance to the maximum allowed control does not exceed the 
golden section. 

Specifying the form of the function f(z), we can construct a more detailed picture of phase 
motion. Note that the case of zero resistancef(z) = 0 has been previously considered in detail in [l] 
and the case of linear resistancef(z) = A, A >O, has been considered in [2]. 

6. CONCLUSION 

The proposed control law (3.19) based on the game-theoretical approach takes the given system 
(1.7) to the origin in a finite time for any non-linearity f(z) and any uncertain disturbance if p < 1. 
This control law does not require a knowledge of the disturbance; we only need to know the 
maximum allowed disturbance, which must not exceed the maximum control. 

Let us stress the difference in the requirements imposed on the functions f(z) and v (x, x’, t). 
Both these functions may be arbitrary in the framework of the corresponding conditions: (1.8) for 
f(z) and (1.9) f or v. However, the non-linear resistance functionf(z) should be known in order to 
synthesize the control, while the disturbance V(X, x’, t) is not needed. 

The simplified approach to control synthesis, which totally ignores the disturbances, is less 
effective. It apriori takes the system to the origin only for p< p* = 0.618. If p> p*, then there exists 
a disturbance for which the system never reaches the origin. 

Yet both approaches have a similar structure and differ only by their switching curves. 
The proposed control technique is robust to various disturbances and parameter variations. These 

factors can be easily incorporated in the analysis if we increase the assumed level of allowed 
disturbances, i.e. the parameter p, creating a certain safety margin by this parameter. 

Note that the synthesized control is suboptimal in the sense that it is time-optimal with the 
worst-case disturbance. 

Our results can be applied to various dynamic systems, e.g. to control the electric motors of 
robotic systems (see [2]). This opens up the possibility of taking into account various resistance laws 
that are often encountered in practice. 
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STATIONARY AND STATIONARIZABLE REGIMES IN 
NORMAL STOCHASTIC DIFFERENTIAL SYSTEMS-f 
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Narrow-sense stationary regimes are considered for multi-dimensional non-linear systems described by Ito 

stochastic differential equations with Wiener processes. The conditions for the existence of stationary and 

stationarizable one-dimensional distributions are derived. Exact expressions are obtained for stationary 

distributions in some mechanical systems. 

1. MANY problems of statistical dynamics of servo systems and systems with ideal stochastic 
holonomic and non-holonomic constraints acted upon by position conservative and non- 
conservative, accelerating and dissipative, gyroscopic forces and disturbances can be reduced to 
normal stochastic systems by augmenting the state vector [l-3]. A normal stochastic differential 
system (SDS) is a stochastic system whose state is described by an Ito stochastic differential 
equation with an appropriate initial condition 

Z’=a(Z,t)+b(Z,t)V, Z(t,)=Z, (1.1) 

tPrikl. Mat. Mekh. Vol. 55, No. 6, pp. 895-903, 1991. 


